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ON THE FINITE DEFLECTIONS OF THIN BEAMS

J. T, HOLDEN

Department ofTheoretical Mechanics, University of Nottingham, Nottingham, England

Abstract~The numerical solution of three problems of finite deflection of uniform beams using the Euler
Bernoulli law of bending are presented, The problems are the uniformly loaded cantilever, the uniformly loaded
simply supported beam and the column under axial loading.

1. INTRODUCTION

IN THIS paper we present the numerical solution to three problems of finite deflection of
uniform beams using the Euler-Bernoulli law of bending, We consider a cantilever with
uniformly distributed load and the solution obtained is compared with an approximate
solution due to Rohde [1]. The second problem considered is that of a simply supported
beam with uniform loading and the third problem is that of the buckling of a beam under
uniform axial loading. Approximate solutions to these problems have been obtained by
various authors notably Rohde [1], Seames and Conway [2] and Iyengar and Rao [3].

The first two problems have been recently considered by Wang [4], but unfortunately
his analysis is in error as he commutes the derivatives d/dx and d/ds. The relationship of
Rohde's approximate solution of the cantilever problem to the exact solution is shown to be
quite different to that indicated in Wang's paper. The approximate solution underestimates
the maximum deflection by a maximum of up to 5! per cent in Wang's paper it apparently
overestimates the deflection by that amount. The third problem is the classical one of a
column buckling under its own weight first studied by Euler (see Truesdell [5]),

The three problems reduce to standard two point boundary value problems and are
integrated using a fourth order Runge-Kutta procedure. The method is not restricted to
uniform loading and can be used for any continuous loading.

2. THE CANTILEVER WITH UNIFORMLY DISTRIBUTED LOAD
We consider a cantilever with uniform cross-section and choose the origin of our

co-ordinate system at the free end. The arc length and slope of the neutral axis are denoted
by sand (J as shown in Fig. 1.

If D is the flexural rigidity of the beam and M the bending moment then the Euler
Bernoulli law of bending states that

If the beam is subject to a uniform loading intensity w then it follows that

w
--scos (JD .
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FIG. 1.

The boundary conditions are that

de
- = 0 at s = 0 and e = 0 at s = L,
ds

where L is the length of the beam.
It is convenient to write s = s/L and to define a nondimensional parameter k by

The equation (2) is then

-ks cos e

(3)

(4)

where de/ds = 0 at s = 0 and e = 0 at s = 1.
The second order equation (4) may now be written as a system of two first order

equations and integrated by standard numerical methods giving eas a function of s. The
x and y co-ordinates of points on the neutral axis are then given by

x(s) = Ls: cos e ds and y(s) = Ls: sin e ds. (5)

The results of this paper were found using a fourth order Runge-Kutta procedure for the
differential equations and Simpson's rule for the integrations [5]. The overall numerical
accuracy obtained was 1 x 10- 4 though there is no difficulty in obtaining any desired
accuracy.

Figure 2 shows the variation of the maximum deflection i5 with k, and the variation of
the horizontal projection of the beam length, h with k. The dashed curves are the correspond
ing results taken as accurately as possible from (1). This shows that Rohde's method under-
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FIG. 2_ Variation of ojL and hjL with k for the cantilever.
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estimated the maximum deflection by less than 51 per cent and in view of the fact that the
Euler-Bernoulli theory is itself an approximate theory we may consider the approximate
solution adequate.

3. THE SIMPLY SUPPORTED BEAM

We consider a uniform beam of length 2L simply supported at its ends a distance 2h
apart. If we measure the arc length s (= Ls) from one end then we have

(6)

where dO/ds = 0 at s = 0 and 0 = 0 aU = 1.
This problem is solved in a similar manner to the cantilever and the results are shown in

Fig. 3.

4. THE BUCKLING OF A COLUMN UNDER AXIAL LOADING

As in Section 2 we measure s along the column from the free end and if 0 is the angle the
tangent at a point makes with the vertical we have

(7)

where dO/ds = 0 at s = 0 and 0 = 0 at s = 1.
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FIG. 3. Variation of (j/L and h/L with k for the simply supported beam.

The numerical results for this problem confirm the critical value for k of7·837 obtained
from the linear theory. The graph showing the variation of maximum horizontal displace
ment () with k is shown on Fig. 4 and shows the well known phenomena that a small increase
of k above the critical value initially produces a large displacement. Figure 4 also shows the
variation ofmaximum height h with k and Fig. 5 shows the shape of the column for values of
k up to 20. Figure 5 may be compared with the set of curves given in Timoshenko and
Gere [6] for the light column with an isolated load at its upper end.
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FIG. 4. Variation of (j/L and h/L with k for the column.
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FIG. 5. Shape of column for values of k up to 20.
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A6cTpaKT-aaeTcli 'llfCJleHHOe peweHlfe Tpex 3aAa'l KOHe'lHOrO nporl16a AJllI OAHOpOAHblX 6alKoK, I1cnOJl
b3yll 3aKOH 3HJlepa-EepHyJlJlIf. 3aAa'llf KaCalQTCli paBHoMepHo HarpylKeHHoH KOHCOJlI1, paBHOMepHO
HarpylKeHHoH, cBo6oAHO onepToH 6aJlKI1 11 KOJlOHHbl nOA BJll1l1Hl1eM oceBOH Harpy3KI1.


